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STABILIZATION OF THE STEADY-STATE MOTIONS 
OF MECHANICAL SYSTEMS WITH CYCLICAL COORDINATES* 

A.YA. KRASINSKII and V.V. RONZHIN 

i. 

The stabilization of the steady-state motions of holonomic systems with 

cyclical coordinates is considered, in cases when it is not essentially 

required that the system be exponentially stable with respect to all the 

phase variables. It is shown that the stabilization can be simplified by 

applying controls (of the feedback type) to only some of the cyclical 

variables. The control signals applied to the other cyclical variables 

are then used only to preserve the initial value of the momentum. From 

the initial equations, a linear subsystem which includes the controlled 

cyclical variables is isolated, and the methods of general control theory 

are used to construct control signals for it such that it is asymptotically 

stable with respect to the phase variables. Stability with respect to all 

the phase variables of the initial system is established by reducing the 
problem to a special case. When the subsystem has low dimensionality, the 
control coefficients can be found analytically, and when the dimensionality 
is high, they can be found by a computer with standard mathematical soft- 

ware, using the method of Repin and Tret'yakov /l/. The stabilization of 
systems with cyclical coordinates by applying forces with respect to these 
coordinates was first considered in /2/, from the standpoint of Lyapunov's 
second method /3/, and from the standpoint of general control theory /l/. 

The control signals were taken to be cyclical pulses, and asymptotic 
stability with respect to the positional coordinates and the velocities 
was obtained; it was remarked that control by forces applied with respect 
tothe cyclical coordinates is possible. In /4, 5/, the stabilization of 
the steady-state motions of holonomic systems by forces applied with 
respect tothecyclical coordinates was analyzed qualitatively. 

Consider a mechanical system which is constrained by geometrical non-stationary 

*Prikl.Matem.Mekhan.,52,4,542-548,1988 
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the action of potential forces. The position of the system is defined by 
coordinates ql,...,qn, of which n-k are cyclical, which the kinetic 

T = T, + T, + T, 

Ta = ‘ia f fil %j (q) (11’q;. : 
T, = jl bj (q) q, 

We assume that the subscripts run over the values j = 1,. . . , n; i = 1, . . ., k; a, f3 = k + 1, 
. . .( n; p = k + 1, . . ., k -I- m; v = k -i- m + 1, . . ., n. 

The state of the system is characterized by the Routh variables 

We introduce Routh's function 

R(g,,...,q,,p,',...,q,',~lr+l,..-~n)=T--n(~)--~Pa~u' 
CL 

fn (9) is the system potential energy). 
We write the equations of motion in Routh's form 

d aR aR 0 dPcz -0 -z-q--q-= ’ dl- 

This system admits of cyclical integrals, and under certain initial conditions, can 
perform the stationary motions 

41 = qr” = const, q,’ = 0, pa = 6, = const (1.U 

Let us consider the possible stabilization to a first approximation of the stationary 
motion (I.11 by linear control signals applied with respect to m cyclical coordinates, where 
On Q n - k), and let us find the type of stability obtained. 

We form the equations of the disturbed motion in the light of the disturbances of the 
cyclical momenta, by putting 

91 = Pi’ + zf~ FM = 6s + 2,~ Pv = & i- fv 

To a first approximation we obtain /6/ 

Ax,' -I- Gr, + lJ/ -I- Cr C H,r + r,j' -I- Hpf = Q, (2, rr, r, f) 
z’ = q, r’ = 0, f = 0 

WI 

where A,G,I’,,C,H,,r,,H, are constant matrices, expressible in the usual. way in terms of 
the matrix of coefficients of the kinetic energy and the generalized forces; @ (r,rl, r, f) are 
non-linear terms. 

We apply linear control forces z~~(r,Zl, r) with respect to the variables r,, and consider 
the linear controlled subsystem of equations 

AZ,’ f G.z, -+- I’/ + Cx $ H,r = 0, x’ = x1, r’ = u (1.3) 

The sufficient condition for the existence of a control u =~~~,,(z,z~,r)~~, solving the 
stabilization problem for the zero solution of system (1.3) with minimization of the functional 

I= m IQ1 (x, x1. r) + $2, (u)] dt 5 * (1.4) 

where Sk1 and data are positive definite quadratic forms, is the condition 

rank W = rank {Q, PQ, . . ., P~+“I-~Q} = 2k + m 

-AT, 

I A 

-A-% -A-T - A-‘H, 

Q= 0 , Pm 0 Ek 0 

E, 0 0 0 

(1.5) 

The optical control has the structure /l/ 

no = S,s + Sp f S,r, S, = llSBtlII, S, = Ii hia Ii, Sy= S II W-9 
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Then, all the roots of the characteristic equation of the linear 
negative real parts. 

The system of Eqs.cl.2) with controls ul10 applied with respect 
and its characteristic equation, take the form 

system (1.3) will have 

to the variables r,r r 

AZ,’ f Gs, f r,r’ + Ct +- H,r + r,f’ i_ H,f = 0 (x, xl, F, f) 

Lz' = ccl, r' = SIX, + s,z + S,r, f' = 0 
(1.7) 

fi-0-P (let 
u 

Ah2+Gh+C rlh+H, 

-SS,h-sS, E,h-sS, =O 11 

where n - m. - k roots of the characteristic equation are zero, and the real parts of all 

the remaining roots are negative, by virtue of the choice of the control signals. 

Consider the functions w and V, given implicitly by the system of equations 

Cw(f) + HP(f) + If,/ = QD, (f)! s,w (f) + &v(f) = 0 (1.8) 

Here, @r(f) = CD(w, O,v,f) are non-linear terms which contain the free critical variables 

f. 

Since the control (1.6) is chosen, it follows by the implicit function theorem that Eqs. 

(1.8) define in the neighbourhood of the point w = 0,~ = 0, f = 0, the continuous functions 

w and v of the variable f. Making the Lyapunov substitution /7/ z = E + w (f), r = rl + v (f), 
we obtain from (1.7) a system of equations that satisfies all the conditions of the Lyapunov- 

Malkin theorem /7, 8/ on the stability in the special case of n-m-k zero roots. We 

have thus proved the following theorem. 

Theorem. If the matrix W given by (1.5) has rank 2k f m, then the controls (1.6) which 

solve the optimum stabilization problem for the zero solution of the linear controlled sub- 

system (1.3) in the case when functional (1.4) is minimized, solve the stabilization problem 

for the zero solution of system (1.2). 

In view of the proof of this theorem, the motion is asymptotically stable with respect 

to the variables E,q,~r, though when we pass to the original variables, we obtainasymptotic 

stability with respect to z1 and stability with respect to x,r, f. 

Notes. lo. Unlike the present (ideal) mechanical system, the dissipative forces which 

are usually actually present prevent the conservation of the uncontrolled cyclical momenta. 

We then need to introduce into the system supplementary drives which compensate the energy 

dissipation, e.g., of the feedback control type. At the same time, these drives can often be 

contructed quite simply, e.g., in the steady state the number of rotations of a gyroscope 

rotor can be held constant by applying a constant voltage to the drive motor and no feedback 

circuits are needed /9/, p.380. 

In addition, there is a class of systems, see Example 3, for which there is virtually 

no dissipation, i.e., the conditions imposed on the problem are satisfied by virtue of the 

physico-mechanical and technical properties of the system. 

2O. Note the case when rl= 0, e.g., when the initial system is gyroscopically discon- 

nected with respect to the control variables, and the stationary motion considered is such 

that the matrix H1 in it vanishes. It can be shown that this motion of the system, like that 

in /4/, cannot be stabilized by linear control signals applied with respect to the chosen 

part of the cyclical coordinates. 

3O. In the case when the controls are applied with respect to all the cyclical variables 

(m= n-k), the controlled subsystem (1.3) transforms into the system of equations of the first 

approximation of the initial system (1.21, while the controls obtained provide stabilization 

up to asymptotic stability in all the variables. Then, in the case of motion for which H# 0, 
there is still the possibility of stabilizing the stationary motion for gyroscopically discon- 

nected systems, regardless of the presence of dissipative forces acting on the positional 

velocities. 

2. In the general case, in problems of high dimensionality, we have remarked that the 

coefficients of the stabilizing signals can be evaluated on a computer. At the same time, in 

the case of objects where the controlled subsystem has low dimensionality, the problem can be 

entirely solved analytically. Let us solve, in general form, thaproblemof stabilizing the 
stationary motions of holonomic systems with a single positional, and several cyclical, 
coordinates. 

Consider a mechanical system which is constrained by stationary couplings and is under 

the action of potential forces, and whose position is described bythreegeneralizedcoordinates 

ql? !72* 4J.3> two of which, e.g., qa and q3,are cyclical. Under certain initial conditions, the 

system can perform the stationary motions 

qr = qlo = const, p2 = 6, = const, pS = 6, = const (2.1) 

For the present mechanical system, the matrix G vanishes. As the controlled variable we 
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take q2. Eqs.(1.7) of the disturbed motion are 

X ' - cx + h,r + hpf + gu + Q, (x,x1, r, f) 1- (2.2) 

2' = 51, r' = u, f' = 0 

where c, la,, h*, g are constants. 
The controlled linear subsystem is 

x1' = cx + h,r + gu, 5’ = x1, r’ = u (2.3) 

In our problem, det W = h12 - cg’ = A. 
Then, in the case AfO, by our theorem, the zero solution of system (2.2) is stabilized 

by the control 

v" = vlxl + vp + vsr 

up to asymptotic stability with respect to x1, and in general, up to stability with respect to 
r, r, f. 

We now note that, for a holonomic mechanical system which is described by two cyclical, 
and one positional, coordinates, and is under the action of a potential force in the neighbour- 
hood of the stationary motion (2.1), Eq.(2.3) of the controlled linear subsystem is the same 
as the system of Eqs.(113.15) considered in the example of /l/ (p.506). 

Then, taking the quality criterion of the transient in the form 

m 

z=+s (xc + x2 + rS+ u*)dt 
0 

and using (expressions (113.17) of /l/ forthecoefficients of the optimal control, we have 

~1 = [g (al, + 4 - h, (aa + c)llA, v2 = [g (aa + c) - (2.4) 
h, (at + cdl/A 

vs = [gh, (a~ -t- c) - h,‘a,- a&l/A, a, = 1 + v2c + g*+2a, 
a2 = a, - 1 + 9 + h,‘, a, = 1/c” + h,’ 

Example 1. Let us examine the stabilization by our method of the motion of a heavy 
gyroscope with ideal universal suspension and vertical axis of rotation of the outer ring 

/lO/. 
Retaining the notation of /lo/, we write the kinetic and potential energies and Routh's 

function for the gyroscope 

T = I/, IA (es* + 9.2 sin* 0)+ C (cp' + 9 eos @*I+ l/SA&‘*S 
‘I* [A,@’ + B&C sin* e + Clp cd e], n = -Pz, eos 8 

R = Vr (A + A,) 0” - W (0) 
w (13) = pz, cos 8 + vl cp, - pv ~0~ e)w (e) + v,p,paic 
Q (e) = (A + B,) sin* 8 + c, cm’ e + A, 

Corresponding to the cyclical coordinates c and + we have the integrals 

P, = c (cp* + rp'e0~ 8) = cOnst 

pg = 19 (e) + c COS* ei 9’ + c cos eT. = const 

The gyroscope can perform the stationary motions 
e = eO, 8’ = 0, p,t = 6, = cOOst, pg = 6, = const 

given by the equation 

a wise = sin e (I(P~ - prF cos evQ (e)l IP, - b9 - pip cos 8) (-4 + 
B, - Cl) COS o/Q (e)i - Pz,) = 0, 

This equation issatisfied by three branches of stationary motions, two of which are the 
straight lines 

e. = 0, eO = IT (2.5) 

We shall apply control with respect to the coordinate cp. The coefficients c,hl,&g of Eqs. 
(2.2) are given bytheexpressions 

The coefficients hl and h, clearly vanish in the stationary motions (2.5), so that these 
motions cannot be stabilized to a first approximation by a control force applied with respect 
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to either cyclical coordinate. The third branch of the stationary motions can be stabilized 

by a force whose coefficients are obtained by substituting for c,h,, and g, in (2.4). We 
then obtain asymptotic stability with respect to 8' and stability with respect to O,pII, and 

Pd. 
It was shown in /2/ that the system is controllable in the problem of stabilizing the 

stationary motion when %I # 0, 00 =i= s t and is not controllable if e0 = 0, o0 = n, when the two 

cyclical momenta are taken as the controls. Stabilization was there considered in the sense 

of achieving asymptotic stability with respect to 0 and 8'. 

Example 2. When analyzing the stabilization to a first approximation of the trivial 

motions /4/ of a gyroscopically connected system /5/, there was a discussion of the stabiliz- 

ation of the trivial steady-state motions of a gyroscope with universal suspension, directed 

violation of the symmetry, and vertical axis of rotation of the outer ring. Apart from gravity 

forces, the gyroscope was acted on by a dissipative force with respect to the positional 

coordinate, and stabilizing moments were applied with respect to the two cyclical coordinates. 

Retaining the notation of /5/, we consider the optimal stabilization to a first approxi- 

mation of the steady-state motions of this gyroscope when there is no dissipation. We will 

show that stabilization is possible by a control applied only to one cyclical coordinate, and 

we write the coefficients of such a control. Introducing the cyclical moments PI = JTl8$', 
pa = aT/acp', we write Routh's function for the system: 

R = liz [a - A-' (0) (b,,c,* - &,c,c, + h~c,*)l B’a + A-’ (0) [(b,,c, - 
b124 p1 + (bIIc, - b,, cd ~~1 0’ + (ma + ~4 .m sin e ~0s 13 - 

‘/d-l 6% Ih~p,~ - 2Mw, + b,,p,21 
A (0) = bnb,, - b2. 4, = h, W, b,, = b,, PI, CI = CL (0) 

The system admits, in particular, of the motion 

O0 = 0, p1 = 6, = const, pa = 6, = const (2.6) 

In the neighbourhood of (2.6), the coefficients of Eqs.(1.7) of the disturbed motion are 

A = a - A-' (0) lb& (0) - 26,, (0) cl (0) c1 - b,, (0) c,] 

C = (m8 f m,) gy, sin E f 'i, (A-' (0) [(V, f ZV,) 6,’ - 2V,6,6,) - 

ii-’ (‘J) ((VI + 2V,) A, + 2Vz (Vg - V,)l do), G = 01 
If, = 0, H, = 0, rl = A-' (0) [b,,q (0) - b,, (0) cz]! 

r? = A-' (0) lb,, (0) c, (0) + b,, (0) cz], V, = A, sin E 

v1 = [C, + (B, - A,) Ay f mss,y,] sin 2~ 

Vz = [B, - C, f (A0 - B,) CL* + m3 (z12 - y12)1 sin* e 

V, = A, cos E, J, = b,p612 - 2b,, (0) 6,6, + b,, (0) 6,% 

When the moment applied about the axis of the outer ring is used for stabilization, i.e., 

with respect to the ~1 coordinate, the controllability condition is satisfied if Cr,+O. If the 

stabilizing moment is applied about the gyroscope rotor axis, i.e., with respect to coordinate 

cp. then the controllability condition is satisfied when Cr,#O. Obviously, these conditions 

are, in qeneral, satisfied. The coefficients of the control ur= vllzl+ Y,*z+ vlsyl, stabilizing 

the.moti& (2.6), are optimal in the sense of criterion I,, while the coefficients of the 

control u2 = vslzl + v+ + vosy,, stabilizing the same motions, which are optimal in the sense 

criterion I,, are found from (2.4) after replacing g in it by r,lA and relA respectively. 

Here, 

of 

We then obtain asymptotic stability with respect to the positional velocity 8' and 

stability with respect to 8 and the remaining velocities. Notice that this property can be 

found directly from the controls for stabilizing any steady-state motion (2.6), including the 

case of equilibrium; it is sufficient to put 6,= 0,6,= 0 in the coefficients of the optimal 

control. 

Note. In Examples 1 and 2 we have taken the case when there is no dissipation. If 

dissipative forces act on the gyroscope, there will always be a drive which compensates the 
action of resistance forces about the rotor axis and maintains (in the steady-state) a constant 

angular velocity of the rotation itself. It is therefore natural to apply the stabilizing 

moment with respect to the second cyclical coordinate 9. i.e., about the axis of the outer 

frame. There are obviously no difficulties in principle when dissipation with respect to both 

*,' and 0' is taken into account. 

Example 3. Consider the inertial motion of a space vehicle (SV), remote from the centre 
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of attraction; the SV is a symmetric rigid body with a controlled flywheel, whose axis of 
rotation is directed along the axis of dynamic symmetry. After performing its last manoeuvre, 
the SV performs a residual motion 'about the centre of mass. We pose the problem of reducing 
this motion to a precession, by using the momentum produced by the flywheel. 

The SV motion about its centre of mass will be described by the 
and the angle a of rotation of the rotor relative to the body. The 
system, as a free steady-state gyrostat, is 

L = %AO'* + l/d sin* 6+'* + ll*C (cp' + 9. cos fJ)* + 
$a’J cos 0 + Ja’cp’ + l/,Ja’= 

Here, A =B, and C are the principal central moments of inertia 
is the axial moment of inertia of the rotor. 

We introduce the momenta 

Euler angles e,+, q 
Lagrange function of the 

of the gyrostat,and J 

a~l8+' = A-sin* tzh+' + c (cp* +o’ cos 8) cos 8 + J ~0s ed = pl, auaq = 
c (cp’ + q ~0s e) + /a’ = Pn,j aLla = *“J ~08 e + Jrp’ + Ja’ = ps 

and Routh's function 

P¶’ 2pPPa Cp& 
+ C-J - C-J +J(C-J) 1 

The equations of motion of the SV about its centre of mass 

Ae" = A-* sin-*e @, - p2 cos e) (Pn - p1 COs e) 
PI’ = 0, p*’ = 0, ps’ = 0 

admit of the stationary motion 

qO' = 0, p1 = cq; ~0.3 eO + J cos eoa; = kl = cona, sin 8, + 0 

pI = Cp,’ + Ja,’ = k, = con&, p* = J (cpo’ + a,‘) = k, = const 

(2.7) 

We regard the problem of reducing the SV residual motion to a precessional motion as a 
problem of stabilizing the motion (2.6). Introducing the disturbances 

e = 8, + 5, PI = k, + Y,, PS = ks + YS 

8’ = *I, PZ = k, + yr 
(2.8) 

and separating the first approximation, we obtain from (2.7): 

.z’ = q, ZI’ = 0.z + by, + CY, + X (3, ~1, Y,, ~1) (2.9) 

yl’ = 0, y; = IL, y; = -u 

where u is the moment acting from the rotor onto the body (d.g., the reactive moment of the 
stator of the flywheel drive motor), and X are non-linear terms. We isolate the controlled 
subsystem. 

2. = 21, 21' = (I.2 + ey,, y; = U 

The controllability cpndition is satisfied for it if c#O, i.e., with cos eO + 0 and 

CP,' -I- Ja,’ + o there exists the linear control 

u = ml+ + m*zl + m*y* (2.10) 

such that the non-zero roots of the characteristic equation of the system of Eqs.(2.9) of the 
first approximation have negative real parts. These roots correspond to the variables z,z,,y,. 

In the corn lete system (2.9) we have the critical case of two zero roots. 
1. 

To reduce 
this case to a angular case, we have to make the replacement 

= = 6 + Ul (Y,). Y, = ? + % (Yl) 

where the functions vl,v* are given by the system of equations 

au1 + 2% f cv* + X (ul, 0, yl, up) = 0, mlvl + mlvI = 0 

which is always solvable for q and v, if the controllability condition holds. 
In short, there is a linear controlling moment (2.10) which stabilizes the motion (2.8) 

up to asymptotic stability with respect to 0‘ and stability 
On introducing the quality criterion 

we can write explicitly, in the same way as above (compare 
of this control. 

with respect to 0, pl,pl and p*. 

(2.4)) the coefficients ml, m,. m* 
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Note that the controlled subsystem of four or five equations in this problem is an 
uncontrolled scalar control, even if it depends on all the phase variables of the problem. 
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ON THE CONSTRUCTION OF A BOUNDED CONTROL IN OSCILLATORY SYSTEMS* 

F.L; CHERNOUS'KO 

The motion of a linear controlled system from any initial state to a 
given final state is considered when there are geometric constraints on 
the control. One way of constructing the control when there are no 
constraints is to use a control signal formed by a linear combination of 
natural motions of the uncontrolled system /l, 2/. In the present paper 
this control method lsusedwhen there are geometrical constraints on the 
control functions. Sufficient conditions are obtained, under which this 
control law solves the problem in finite time. The same approach is 
applied to a multifrequency system of linear oscillators (pendulums) which 
are scalarly controlled. The control law is obtained and the process time 
is estimated. The control is also found for a two-mass system which 
contains an oscillatory unit. 

1. Formulation of the problem. Consider a linear controlled dynamic sytstem with a 
-bounded control 

5' = A @)x + B (Qu (1.1) 
I u WI < a, a >o (1.2) 

Here, x is the n-dimensional vector of phase coordinates, u is the m-dimensional control 
vector, A (t) and B(t) are n X n and nXm matrices respectively, piecewise continuously 
dependent on time t, and a is a positive constant. 

We shall construct the control u(t) which satisfies the constraint (1.2) for t E It,, T1 
and moves the system from the initial state 
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